Run PyTorch Distributed

This example is based on the default MNIST example found in the Kubeflow’s PyTorch guide here.

To begin, import the required dependencies.

import os
import typing
from dataclasses import dataclass
from typing import Tuple

import flytekit
from dataclasses_json import dataclass_json
from flytekit import ImageSpec, Resources, task, workflow
from flytekit.types.directory import TensorboardLogs
from flytekit.types.file import PNGImageFile, PythonPickledFile

WORLD_SIZE = int(os.environ.get("WORLD_SIZE", 1))

Create an ImageSpec to encompass all the dependencies needed for the PyTorch task.

custom_image = ImageSpec(
    packages=["torch", "torchvision", "flytekitplugins-kfpytorch", "matplotlib", "tensorboardX"],
    registry="ghcr.io/flyteorg",
)

Important

Replace ghcr.io/flyteorg with a container registry you’ve access to publish to. To upload the image to the local registry in the demo cluster, indicate the registry as localhost:30000.

The following imports are required to configure the PyTorch cluster in Flyte.

import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from flytekitplugins.kfpytorch import PyTorch, Worker
from tensorboardX import SummaryWriter
from torch import distributed as dist
from torch import nn, optim
from torchvision import datasets, transforms

You can activate GPU support by either using the base image that includes the necessary GPU dependencies or by initializing the CUDA parameters within the ImageSpec.

Adjust memory, GPU usage and storage settings based on whether you are registering against the demo cluster or not.

if os.getenv("SANDBOX"):
    cpu_request = "500m"
    mem_request = "500Mi"
    gpu_request = "0"
    mem_limit = "500Mi"
    gpu_limit = "0"
else:
    cpu_request = "1000m"
    mem_request = "4Gi"
    gpu_request = "1"
    mem_limit = "8Gi"
    gpu_limit = "1"

In this example, we create a model.

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

We define a trainer.

def train(model, device, train_loader, optimizer, epoch, writer, log_interval):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print(
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}".format(
                    epoch,
                    batch_idx * len(data),
                    len(train_loader.dataset),
                    100.0 * batch_idx / len(train_loader),
                    loss.item(),
                )
            )
            niter = epoch * len(train_loader) + batch_idx
            writer.add_scalar("loss", loss.item(), niter)

We define a test function to test the trained model.

def test(model, device, test_loader, writer, epoch):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction="sum").item()  # sum up batch loss
            pred = output.max(1, keepdim=True)[1]  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print("\naccuracy={:.4f}\n".format(float(correct) / len(test_loader.dataset)))
    accuracy = float(correct) / len(test_loader.dataset)
    writer.add_scalar("accuracy", accuracy, epoch)
    return accuracy

We define a couple of auxiliary functions, initialize hyperparameters and create a NamedTuple to capture the outputs of the PyTorch task.

def epoch_step(model, device, train_loader, test_loader, optimizer, epoch, writer, log_interval):
    train(model, device, train_loader, optimizer, epoch, writer, log_interval)
    return test(model, device, test_loader, writer, epoch)


def should_distribute():
    return dist.is_available() and WORLD_SIZE > 1


def is_distributed():
    return dist.is_available() and dist.is_initialized()


@dataclass_json
@dataclass
class Hyperparameters(object):
    """
    Args:
        backend: Distributed backend to use
        sgd_momentum: SGD momentum (default: 0.5)
        seed: random seed (default: 1)
        log_interval: how many batches to wait for before logging training status
        batch_size: input batch size for training (default: 64)
        test_batch_size: input batch size for testing (default: 1000)
        epochs: number of epochs to train (default: 10)
        learning_rate: learning rate (default: 0.01)
    """

    backend: str = dist.Backend.GLOO
    sgd_momentum: float = 0.5
    seed: int = 1
    log_interval: int = 10
    batch_size: int = 64
    test_batch_size: int = 1000
    epochs: int = 10
    learning_rate: float = 0.01


TrainingOutputs = typing.NamedTuple(
    "TrainingOutputs",
    epoch_accuracies=typing.List[float],
    model_state=PythonPickledFile,
    logs=TensorboardLogs,
)

To create a PyTorch task, add PyTorch config to the Flyte task.

@task(
    task_config=PyTorch(worker=Worker(replicas=2)),
    retries=2,
    cache=True,
    cache_version="0.1",
    requests=Resources(cpu=cpu_request, mem=mem_request, gpu=gpu_request),
    limits=Resources(mem=mem_limit, gpu=gpu_limit),
    container_image=custom_image,
)
def mnist_pytorch_job(hp: Hyperparameters) -> TrainingOutputs:
    log_dir = os.path.join(flytekit.current_context().working_directory, "logs")
    writer = SummaryWriter(log_dir)

    torch.manual_seed(hp.seed)

    use_cuda = torch.cuda.is_available()
    print(f"Use cuda {use_cuda}")
    device = torch.device("cuda" if use_cuda else "cpu")

    print("Using device: {}, world size: {}".format(device, WORLD_SIZE))

    if should_distribute():
        print("Using distributed PyTorch with {} backend".format(hp.backend))
        dist.init_process_group(backend=hp.backend)

    # Load data
    kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST(
            os.path.join(flytekit.current_context().working_directory, "data"),
            train=True,
            download=True,
            transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
        ),
        batch_size=hp.batch_size,
        shuffle=True,
        **kwargs,
    )
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST(
            os.path.join(flytekit.current_context().working_directory, "data"),
            train=False,
            transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
        ),
        batch_size=hp.test_batch_size,
        shuffle=False,
        **kwargs,
    )

    # Train the model
    model = Net().to(device)

    if is_distributed():
        Distributor = nn.parallel.DistributedDataParallel if use_cuda else nn.parallel.DistributedDataParallelCPU
        model = Distributor(model)

    optimizer = optim.SGD(model.parameters(), lr=hp.learning_rate, momentum=hp.sgd_momentum)

    accuracies = [
        epoch_step(
            model,
            device,
            train_loader,
            test_loader,
            optimizer,
            epoch,
            writer,
            hp.log_interval,
        )
        for epoch in range(1, hp.epochs + 1)
    ]

    # Save the model
    model_file = os.path.join(flytekit.current_context().working_directory, "mnist_cnn.pt")
    torch.save(model.state_dict(), model_file)

    return TrainingOutputs(
        epoch_accuracies=accuracies,
        model_state=PythonPickledFile(model_file),
        logs=TensorboardLogs(log_dir),
    )

The torch.save function is utilized to save the model’s state_dict in accordance with the guidelines outlined in the PyTorch documentation. Typically, the file is given a .pt extension.

Additionally, an output variable named logs will be generated. These logs can be employed for visualizing the training process in Tensorboard. They constitute the outcomes of the SummaryWriter interface.

Next, we generate an accuracy plot in the form of a PNG image.

@task(container_image=custom_image)
def plot_accuracy(epoch_accuracies: typing.List[float]) -> PNGImageFile:
    plt.plot(epoch_accuracies)
    plt.title("Accuracy")
    plt.ylabel("accuracy")
    plt.xlabel("epoch")
    accuracy_plot = os.path.join(flytekit.current_context().working_directory, "accuracy.png")
    plt.savefig(accuracy_plot)
    return PNGImageFile(accuracy_plot)

In the end, we combine the training and plotting processes within a single pipeline. In this setup, the training is executed initially, succeeded by the accuracy plotting phase. Data is exchanged between these steps, and the workflow produces both the image and the serialized model as its outputs.

@workflow
def pytorch_training_wf(
    hp: Hyperparameters = Hyperparameters(epochs=2, batch_size=128),
) -> Tuple[PythonPickledFile, PNGImageFile, TensorboardLogs]:
    accuracies, model, logs = mnist_pytorch_job(hp=hp)
    plot = plot_accuracy(epoch_accuracies=accuracies)
    return model, plot, logs

Running the model locally requires minimal modifications, as long as the code handles the resolution of whether it should be run in a distributed manner or not.

if __name__ == "__main__":
    model, plot, logs = pytorch_training_wf()
    print(f"Model: {model}, plot PNG: {plot}, Tensorboard Log Dir: {logs}")

Note

During local execution, the output of the process appears as follows:

Model: /tmp/flyte/20210110_214129/mock_remote/8421ae4d041f76488e245edf3f4360d5/my_model.h5, plot PNG: /tmp/flyte/20210110_214129/mock_remote/cf6a2cd9d3ded89ed814278a8fb3678c/accuracy.png, Tensorboard Log Dir: /tmp/flyte/20210110_214129/mock_remote/a4b04e58e21f26f08f81df24094d6446/

To visualize the training progress, utilize the Tensorboard log directory path as input for Tensorboard, as demonstrated below:

tensorboard --logdir /tmp/flyte/20210110_214129/mock_remote/a4b04e58e21f26f08f81df24094d6446/

When executing remotely on the Flyte-hosted environment, the workflow execution outputs can be retrieved. You can obtain the outputs, which will be in the form of a path to a storage system such as S3, GCS, Minio, etc. To visualize the outcomes, you can point Tensorboard on your local machine to these storage locations.

Pytorch elastic training (torchrun)

Flyte supports distributed training through torch elastic using torchrun. You can carry out elastic training on a single node with a local worker group of size four, analogous to executing torchrun --nproc-per-node=4 --nnodes=1 .....

The process involves adding Elastic configuration to the Flyte task.

from flytekitplugins.kfpytorch import Elastic

@task(
  task_config=Elastic(
    nnodes=1,
    nproc_per_node=4,
  )
)
def task():
    ...

This initializes four worker processes, whether executed locally or remotely within a Kubernetes pod within a Flyte cluster. For distributed elastic training across multiple nodes, the Elastic task configuration can be utilized as follows:

from flytekitplugins.kfpytorch import Elastic

@task(
  task_config=Elastic(
    nnodes=2,
    nproc_per_node=4,
  ),
)
def train():

This configuration runs distributed training on two nodes, each with four worker processes.

Note

In the context of distributed training, it’s important to acknowledge that return values from various workers could potentially vary. If you need to regulate which worker’s return value gets passed on to subsequent tasks in the workflow, you have the option to raise an IgnoreOutputs exception for all remaining ranks.