SageMaker Inference Agent#
This guide provides an overview of how to set up the SageMaker inference agent in your Flyte deployment.
Specify agent configuration#
Edit the relevant YAML file to specify the agent.
kubectl edit configmap flyte-sandbox-config -n flyte
tasks:
task-plugins:
enabled-plugins:
- container
- sidecar
- k8s-array
- agent-service
default-for-task-types:
- container: container
- container_array: k8s-array
- boto: agent-service
- sagemaker-endpoint: agent-service
Create a file named values-override.yaml
and add the following configuration to it:
configmap:
enabled_plugins:
tasks:
task-plugins:
enabled-plugins:
- container
- sidecar
- k8s-array
- agent-service
default-for-task-types:
container: container
sidecar: sidecar
container_array: k8s-array
boto: agent-service
sagemaker-endpoint: agent-service
AWS credentials#
When running the code locally, you can set AWS credentials as environment variables. When running on a production AWS cluster, the IAM role is used by default. Ensure that it has the AmazonSageMakerFullAccess policy attached.
Upgrade the Flyte Helm release#
helm upgrade <RELEASE_NAME> flyteorg/flyte-binary -n <YOUR_NAMESPACE> --values <YOUR_YAML_FILE>
Replace <RELEASE_NAME>
with the name of your release (e.g., flyte-backend
),
<YOUR_NAMESPACE>
with the name of your namespace (e.g., flyte
),
and <YOUR_YAML_FILE>
with the name of your YAML file.
helm upgrade <RELEASE_NAME> flyte/flyte-core -n <YOUR_NAMESPACE> --values values-override.yaml
Replace <RELEASE_NAME>
with the name of your release (e.g., flyte
)
and <YOUR_NAMESPACE>
with the name of your namespace (e.g., flyte
).
You can refer to the documentation here.