Flyte Pipeline in One Jupyter Notebook#

In this example, we will implement a simple pipeline that takes hyperparameters, does EDA, feature engineering, and measures the Gradient Boosting model’s performance using mean absolute error (MAE), all in one notebook.

First, let’s import the libraries we will use in this example.

import pathlib

from flytekit import Resources, kwtypes, workflow
from flytekitplugins.papermill import NotebookTask

We define a NotebookTask to run the Jupyter notebook.

NotebookTask Parameters#

notebook_path

Path to the Jupyter notebook file

inputs

Inputs to be sent to the notebook

outputs

Outputs to be returned from the notebook

requests

Specify compute resource requests for your task.

This notebook returns mae_score as the output.

nb = NotebookTask(
    name="pipeline-nb",
    notebook_path=str(pathlib.Path(__file__).parent.absolute() / "supermarket_regression.ipynb"),
    inputs=kwtypes(
        n_estimators=int,
        max_depth=int,
        max_features=str,
        min_samples_split=int,
        random_state=int,
    ),
    outputs=kwtypes(mae_score=float),
    requests=Resources(mem="500Mi"),
)

Since a task need not be defined, we create a workflow and return the MAE score.

@workflow
def notebook_wf(
    n_estimators: int = 150,
    max_depth: int = 3,
    max_features: str = "sqrt",
    min_samples_split: int = 4,
    random_state: int = 2,
) -> float:
    output = nb(
        n_estimators=n_estimators,
        max_depth=max_depth,
        max_features=max_features,
        min_samples_split=min_samples_split,
        random_state=random_state,
    )
    return output.mae_score

We can now run the notebook locally.

if __name__ == "__main__":
    print(notebook_wf())