flytekitplugins.awssagemaker.SagemakerCustomTrainingTask#
- class flytekitplugins.awssagemaker.SagemakerCustomTrainingTask(*args, **kwargs)[source]#
Allows a custom training algorithm to be executed on Amazon Sagemaker. For this to work, make sure your container is built according to Flyte plugin documentation (TODO point the link here)
- Parameters
task_config (T) – Configuration object for Task. Should be a unique type for that specific Task
task_function (Callable) – Python function that has type annotations and works for the task
ignore_input_vars (Optional[List[str]]) – When supplied, these input variables will be removed from the interface. This can be used to inject some client side variables only. Prefer using ExecutionParams
execution_mode (Optional[ExecutionBehavior]) – Defines how the execution should behave, for example executing normally or specially handling a dynamic case.
task_type (str) – String task type to be associated with this Task
Methods
- compile(ctx, *args, **kwargs)#
Generates a node that encapsulates this task in a workflow definition.
- Parameters
- Return type
Optional[Union[Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise]]
- compile_into_workflow(ctx, task_function, **kwargs)#
In the case of dynamic workflows, this function will produce a workflow definition at execution time which will then proceed to be executed.
- construct_node_metadata()#
Used when constructing the node that encapsulates this task as part of a broader workflow definition.
- Return type
flytekit.models.core.workflow.NodeMetadata
- dispatch_execute(ctx, input_literal_map)#
This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.
VoidPromise
is returned in the case when the task itself declares no outputs.Literal Map
is returned when the task returns either one more outputs in the declaration. Individual outputs may be noneDynamicJobSpec
is returned when a dynamic workflow is executed
- dynamic_execute(task_function, **kwargs)#
By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte literal wrappers so that the kwargs we are working with here are now Python native literal values. This function is also expected to return Python native literal values.
Since the user code within a dynamic task constitute a workflow, we have to first compile the workflow, and then execute that workflow.
When running for real in production, the task would stop after the compilation step, and then create a file representing that newly generated workflow, instead of executing it.
- execute(**kwargs)#
This method will be invoked to execute the task. If you do decide to override this method you must also handle dynamic tasks or you will no longer be able to use the task as a dynamic task generator.
- Return type
- get_command(settings)#
Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
- get_config(settings)#
Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
- get_container(settings)#
Returns the container definition (if any) that is used to run the task on hosted Flyte.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
flytekit.models.task.Container
- get_custom(settings)[source]#
Return additional plugin-specific custom data (if any) as a serializable dictionary.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
- get_default_command(settings)#
Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
- get_extended_resources(settings)#
Returns the extended resources to allocate to the task on hosted Flyte.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
Optional[flyteidl.core.tasks_pb2.ExtendedResources]
- get_input_types()#
Returns the names and python types as a dictionary for the inputs of this task.
- get_k8s_pod(settings)#
Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
flytekit.models.task.K8sPod
- get_sql(settings)#
Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
- Parameters
settings (flytekit.configuration.SerializationSettings) –
- Return type
Optional[flytekit.models.task.Sql]
- get_type_for_input_var(k, v)#
Returns the python type for an input variable by name.
- get_type_for_output_var(k, v)#
Returns the python type for the specified output variable by name.
- local_execute(ctx, **kwargs)#
This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).
- Parameters
- Return type
Optional[Union[Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, Coroutine]]
- local_execution_mode()#
- post_execute(user_params, rval)[source]#
In the case of distributed execution, we check the should_persist_predicate in the configuration to determine if the output should be persisted. This is because in distributed training, multiple nodes may produce partial outputs and only the user process knows the output that should be generated. They can control the choice using the predicate.
To control if output is generated across every execution, we override the post_execute method and sometimes return a None
- Parameters
user_params (flytekit.core.context_manager.ExecutionParameters) –
rval (Any) –
- Return type
- pre_execute(user_params)[source]#
Pre-execute for Sagemaker will automatically add the distributed context to the execution params, only if the number of execution instances is > 1. Otherwise this is considered to be a single node execution
- Parameters
user_params (flytekit.core.context_manager.ExecutionParameters) –
- Return type
- reset_command_fn()#
Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.
- sandbox_execute(ctx, input_literal_map)#
Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.
- Parameters
input_literal_map (flytekit.models.literals.LiteralMap) –
- Return type
flytekit.models.literals.LiteralMap
- set_command_fn(get_command_fn=None)#
By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.
- Parameters
get_command_fn (Optional[Callable[[flytekit.configuration.SerializationSettings], List[str]]]) –
Attributes
- container_image
- disable_deck
If true, this task will not output deck html file
- docs
- environment
Any environment variables that supplied during the execution of the task.
- execution_mode
- instantiated_in
- interface
- lhs
- location
- metadata
- name
Returns the name of the task.
- python_interface
Returns this task’s python interface.
- resources
- security_context
- task_config
Returns the user-specified task config which is used for plugin-specific handling of the task.
- task_function
- task_resolver
- task_type
- task_type_version