flytekitplugins.awssagemaker.HyperparameterTuningJobConfig#
- class flytekitplugins.awssagemaker.HyperparameterTuningJobConfig(tuning_strategy, tuning_objective, training_job_early_stopping_type)[source]#
The specification of the hyperparameter tuning process https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-tuning-job.html#automatic-model-tuning-ex-low-tuning-config
Methods
- Parameters
tuning_strategy (int) –
tuning_objective (flytekitplugins.awssagemaker.models.hpo_job.HyperparameterTuningObjective) –
training_job_early_stopping_type (flytekitplugins.awssagemaker.models.hpo_job.TrainingJobEarlyStoppingType) –
- classmethod from_flyte_idl(pb2_object)[source]#
- Parameters
pb2_object (flyteidl.plugins.sagemaker.hyperparameter_tuning_job_pb2.HyperparameterTuningJobConfig) –
- short_string()#
- Return type
Text
- to_flyte_idl()[source]#
- Return type
flyteidl.plugins.sagemaker.hyperparameter_tuning_job_pb2.HyperparameterTuningJobConfig
- verbose_string()#
- Return type
Text
Attributes
- is_empty
- training_job_early_stopping_type
Enum value of TrainingJobEarlyStoppingType. When the training jobs launched by the hyperparameter tuning job are not improving significantly, a hyperparameter tuning job can be stopping early. This attribute determines how the early stopping is to be done. Note that there’s only a subset of built-in algorithms that supports early stopping. see: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html :rtype: int
- tuning_objective
The target metric and the objective of the hyperparameter tuning. :rtype: HyperparameterTuningObjective
- tuning_strategy
Enum value of HyperparameterTuningStrategy. Setting the strategy used when searching in the hyperparameter space :rtype: int